Video Camera That Records At The Speed Of Thought

By | October 17, 2009 researchers who created an ultra-fast, extremely high-resolution video camera have enabled dozens of medical applications, including one scenario that can record 'thought' processes travelling along neurons.

The Megaframe project scored a staggering number of breakthroughs to create the world's first 1024 pixel, photon-resolution, million-frame-per-second CMOS camera.

Their work has pushed the boundaries of CMOS (a type of semiconductor) miniaturisation and sophistication. But it is in the application of their technology that the most stunning impacts of the Megaframe project will be seen, particularly in medical applications.

That is because the camera can detect a single photon at a million times a second, and so it can record molecular processes in unprecedented detail. "We need this sort of detail because biomedical scientists are studying processes at the intra-cellular and molecular levels," underlines Edoardo Charbon, coordinator of the EU-funded Megaframe project.

Scientists have developed extremely ingenious ways to infer or deduce what is happening at the molecular level, and Megaframe could make that process even more detailed. Essentially, scientists use a variety of emissive materials to see what is happening in microscopic biomedical processes.

Take Fluorescence Lifetime Imaging Microscopy (FLIM). Here, a fluorescent material is introduced to the area of interest. Fluorescence has some interesting properties, for example a particular spectrum of emission and a rate of decay.

One particular fluorophore, Oregon Green Bapta (OGB-1), decays at a rate proportionate to the presence of calcium. Interestingly, calcium is an important indicator of neuron activity.

"So it is possible, for example, to go inside neurons and look at their ion channels. These are the channels that allow neurons to communicate with other neurons. And you can basically see the amount of calcium that is present. You can probe optically how neurons communicate with other neurons just by looking at the concentrations of calcium in real time," explains Charbon.

So scientists can use the OGB-1 to indicate the presence and concentration of calcium, and the whole process can be recorded in ultra-fine detail thanks to single-photon detectors, such as the ones present in the Megaframe camera. The camera is recording at the speed of thought.

"Biomedical scientists could in principle use this microscopic information about calcium to learn about macroscopic conditions like Parkinson's, or Alzheimer's or epilepsy," Charbon stresses.

Megaframe could have a significant impact on any medical science that uses visible light emissive scanning technologies like FLIM. But it can even have an impact where visible light is not present….

via Video Camera That Records At The Speed Of Thought.

Leave a Reply