New Process Generates Hydrogen From Aluminum Alloy To Run Engines, Fuel Cells

By | May 28, 2013

New Process Generates Hydrogen From Aluminum Alloy To Run Engines, Fuel Cells

A Purdue University engineer has developed a method that uses an aluminum alloy to extract hydrogen from water for running fuel cells or internal combustion engines, and the technique could be used to replace gasoline.

The method makes it unnecessary to store or transport hydrogen – two major challenges in creating a hydrogen economy, said Jerry Woodall, a distinguished professor of electrical and computer engineering at Purdue who invented the process.

“The hydrogen is generated on demand, so you only produce as much as you need when you need it,” said Woodall, who presented research findings detailing how the system works during a recent energy symposium at Purdue.

The technology could be used to drive small internal combustion engines in various applications, including portable emergency generators, lawn mowers and chain saws. The process could, in theory, also be used to replace gasoline for cars and trucks, he said.

Hydrogen is generated spontaneously when water is added to pellets of the alloy, which is made of aluminum and a metal called gallium. The researchers have shown how hydrogen is produced when water is added to a small tank containing the pellets. Hydrogen produced in such a system could be fed directly to an engine, such as those on lawn mowers.

They use gallium to dope silicon substrates for semiconductors. It’s not benign stuff, unfortunately. “Gallium is a chemical element in the periodic table that has the symbol Ga and atomic number 31. A rare, soft silvery metallic poor metal, gallium is a brittle solid at low temperatures but liquefies slightly above room temperature and indeed will melt in the hand. It occurs in trace amounts in bauxite and zinc ores. An important application is in the compound gallium arsenide, used as a semiconductor, most notably in light-emitting diodes (LEDs).” en.wikipedia.org/wiki/Gallium …

“How does this compare with conventional technology? Well, if I put gasoline in a tank, I get six kilowatt hours per pound, or about two and a half times the energy than I get for a pound of aluminum. So I need about two and a half times the weight of aluminum to get the same energy output, but I eliminate gasoline entirely, and I am using a resource that is cheap and abundant in the United States. If only the energy of the generated hydrogen is used, then the aluminum-gallium alloy would require about the same space as a tank of gasoline, so no extra room would be needed, and the added weight would be the equivalent of an extra passenger, albeit a pretty large extra passenger.”

via Purdue

It is now the year 2018 and we don’t have this. What has happened with this research in the past 11 years?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.