White Blood Cells Can Sprout ‘Legs’ And Move Like Millipedes

By | May 6, 2009

How do white blood cells – immune system ‘soldiers’ – get to the site of infection or injury? To do so, they must crawl swiftly along the lining of the blood vessel – gripping it tightly to avoid being swept away in the blood flow – all the while searching for temporary ‘road signs’ made of special adhesion molecules that let them know where to cross the blood vessel barrier so they can get to the damaged tissue.

In research recently published in the journal Immunity, Prof. Ronen Alon and his research student Ziv Shulman of the Weizmann Institute’s Immunology Department show how white blood cells advance along the length of the endothelial cells lining the blood vessels. Current opinion maintains that immune cells advance like inchworms, but Alon’s new findings show that the rapid movement of the white blood cells is more like that of millipedes.

Rather than sticking front and back, folding and extending to push itself forward, the cell creates numerous tiny ‘legs’ no more than a micron in length – adhesion points, rich in adhesion molecules (named LFA-1) that bind to partner adhesion molecules present on the surface of the blood vessels. Tens of these legs attach and detach in sequence within seconds – allowing them to move rapidly while keeping a good grip on the vessels’ sides.

Next, the scientists turned to the Institute’s Electron Microscopy Unit. Images produced by scanning and transmission electron microscopes, taken by Drs. Eugenia Klein and Vera Shinder, showed that upon attaching to the blood vessel wall, the white blood cell legs ‘dig’ themselves into the endothelium, pressing down on its surface. The fact that these legs – which had been thought to appear only when the cells leave the blood vessels – are used in crawling the vessel lining suggests that they may serve as probes to sense exit signals.

via White Blood Cells Can Sprout ‘Legs’ And Move Like Millipedes.

Leave a Reply