New Surgical Tool Enables Superhuman Precision

By | September 27, 2012

Video of the CAD model and prototype of the fiber-optic-sensor-based microsurgical tool, SMART. Courtesy Cheol Song, Johns Hopkins University.The CAD model and prototype of the fiber-optic-sensor-based microsurgical tool, SMART. Courtesy Cheol Song, Johns Hopkins University.Even the most skilled and steady surgeons experience minute, almost imperceptible hand tremors when performing delicate tasks. Normally, these tiny motions are inconsequential, but for doctors specializing in fine-scale surgery, such as operating inside the human eye or repairing microscopic nerve fibers, freehand tremors can pose a serious risk for patients.

By harnessing a specialized optical fiber sensor, a new “smart” surgical tool can compensate for this unwanted movement by making hundreds of precise position corrections each second – fast enough to keep the surgeon’s hand on target. Researchers from the Johns Hopkins University Whiting School of Engineering and Johns Hopkins School of Medicine in Baltimore, Md., have combined the Optical Coherence Tomography (OCT) imaging technique as a distance sensor with computer-controlled piezoelectric motors to actively stabilize the tip of a surgical tool. A paper describing their new device, named SMART (Smart Micromanipulation Aided Robotic-surgical Tool), was published today in the Optical Society’s (OSA) open-access journal Optics Express.

“Microsurgery relies on excellent motor control to perform critical tasks,” said Cheol Song, a postdoctoral fellow in the Electrical and Computer Engineering Department at Johns Hopkins. “But certain fine micro-manipulations remain beyond the motor control of even the most skilled surgeon.” At its most steady, the human hand naturally trembles, moving on the order of 50-100 microns (about the thickness of a sheet of paper) several times each second.

Various optomechatronics techniques, including robotics, have been developed to help augment stability and minimize the impact of hand tremors. None so far has been able to seamlessly merge simple fiber-optic rapid and fine-grained sensing with handheld automated surgical tools. The major challenge for researchers has been finding a way to precisely measure and compensate for the relative motions of a surgical instrument in relation to the target.

The emerging imaging technique of OCT attracted the attention of the researchers because it has higher resolution (approximately 10 microns) than either MRI or ultrasound. It also uses eye-safe near infrared light to image tissues. …

via The Optical Society – Cyborg Surgeon: Hand and Technology Combine in New Surgical Tool That Enables Superhuman Precision.

0 thoughts on “New Surgical Tool Enables Superhuman Precision

  1. Fred Killer

    My Smart Fortwo used this technology to nip through traffic and tuck into parking spaces with absolute precision, until one of our drivers backed into it in said parking space.

Leave a Reply