Gene linked to rare form of progressive hearing loss in males identified

By | December 18, 2009

Gene linked to rare form of progressive hearing loss in males identified

A gene associated with a rare form of progressive deafness in males has been identified by an international team of researchers funded by the National Institute on Deafness and Other Communication Disorders. The gene, PRPS1, appears to be crucial in inner ear development and maintenance. The findings are published in the Dec. 17 early online issue of the American Journal of Human Genetics.

“This discovery offers exciting therapeutic implications,” said James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. “Not only does it give scientists a way to develop a targeted treatment for hearing loss in boys with this disorder, it may also open doors to the treatment of other types of deafness, including some forms of acquired hearing loss.”

The gene is associated with DFN2, a progressive form of deafness that primarily affects males. Boys with DFN2 begin to lose their hearing in both ears roughly between the ages of 5 and 15, and over the course of several decades will experience hearing loss that can range from severe to profound. Their mothers, who carry the defective PRPS1 gene, may experience hearing loss as well, but much later in life and in a milder form. Families with DFN2 have been identified in the United States, Great Britain, and China.

The NIDCD-funded researchers led by Xue Zhong Liu, M.D., Ph.D., of the University of Miami Miller School of Medicine, discovered that the PRPS1 gene encodes the enzyme phosphoribosylpyrophosphate (PRPP) synthetase 1, which produces and regulates PRPP (phospho-ribosylpyrophosphate), and appears to play a key role in inner ear development and maintenance. The four mutations identified in the PRPS1 gene cause a decrease in the production of the PRPP synthetase 1 protein that results in defects in sensory cells (called hair cells) in the inner ear, and eventually leads to progressive deafness.

“PRPS1 is an interesting example of a human disease gene in which gain of function or loss of function mutations cause several different and distinct hereditary disorders,” says Dr. Liu. “Our findings emphasize the body’s need for tight regulation of PRPP synthetase 1 since a drop in activity can lead to deafness.” Other mutations in the PRPS1 gene have been linked to neurodegenerative disorders such as Arts syndrome and a form of Charcot-Marie Tooth disease, both of which feature deafness in the constellation of symptoms.

Knowing that a reduction in the amount of PRPP synthetase 1 is what causes deafness in DFN2, Liu and his colleagues are now exploring potential enzyme replacement therapies to either restore hearing or prevent further hearing loss in boys with DFN2. They believe that since the PRPS1 mutations can be used as a genetic marker for DFN2, in the future at-risk boys could be tested at birth and immediately put on enzyme replacement therapy to reduce or prevent the hearing loss that would ordinarily come later in life.

In addition, the knowledge that scientists gather about the mechanisms of PRPS1 potentially could be used to develop treatments to combat acquired hearing loss, such as the hearing loss caused by drugs that are used in some chemotherapy regimens and treatments for HIV/AIDS. These are powerful and helpful medications, but they have the unfortunate side effect of damaging, even killing, hair cells in the inner ear. The results from this study open the possibility for improving these life-saving treatments by eliminating or reducing the disabling side effect of hearing loss.

In addition to NIDCD support, the following institutions collaborated in this study: Chinese PLA General Hospital, Beijing; University of Science and Technology of China, Hefei; Chinese Academy of Sciences, Hefei; Guizhou Provincial People’s Hospital, GuiYang, China; UCL Institute of Child Health, London; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Second Medical University, Shanghai; Department of Genetics, Harvard Medical School, Boston; Massachusetts Eye and Ear Infirmary, Boston; and Howard Hughes Medical Institute, Boston.

via NIH

I hope this is not what is causing my hearing loss and tinnitius because this disease also leads to eventual problems walking and seeing! (But if I do have it, this research is encouraging.)

… affected male patients invariably develop sensorineural hearing loss of prelingual type followed by gating disturbance and visual loss. The family of European descent was reported in 1967 as having Rosenberg-Chutorian syndrome, and recently a Korean family with the same symptom triad was identified with a novel disease locus CMTX5 on the chromosome band Xq21.32-q24. PRPS1 (phosphoribosyl pyrophosphate synthetase 1) is an isoform of the PRPS gene family and is ubiquitously expressed in human tissues, including cochlea. The enzyme mediates the biochemical step critical for purine metabolism and nucleotide biosynthesis. The mutations identified were E43D, in patients with Rosenberg-Chutorian syndrome, and M115T, in the Korean patients with CMTX5. We also showed decreased enzyme activity in patients with M115T. PRPS1 is the first CMT gene that encodes a metabolic enzyme, shedding a new light on the understanding of peripheral nerve-specific metabolism and also suggesting the potential of PRPS1 as a target for drugs in prevention and treatment of peripheral neuropathy by antimetabolite therapy. – link

Would you really want to look into the crystal ball of your DNA? Even if you do, do you see why keeping your DNA profile private may be important? Many potential diseases may not be expressed but you could end up being discriminated against based on your genetic potentials.

One thought on “Gene linked to rare form of progressive hearing loss in males identified

  1. Arlene Chase

    This is an interesting study. I just moved to a senior residential area and was surprised at the number of people with hearing aides. This study hopefully will help.

Leave a Reply