Cave bacteria could help develop future antibiotics

By | September 11, 2012

Hazel Barton in the Lechuguilla Cave in New MexicoBacteria found in caves could provide the clues to help produce antibiotics needed in the fight against drug-resistant superbugs, explains Prof Hazel Barton.

When you think about caves, your first thoughts might not include microbes and antibiotics, but these isolated and starved environments may hold the key to better understanding our long battle with drug resistant bacteria.

Antibiotics are chemical keys, constructed to fit the molecular locks necessary to kill bacteria. They mimic cellular patterns to block, bind and even collapse critical structures within the cell.

As a result, the bacterium is unable to function, falls apart, or dies. Antibiotics are also remarkably specific, able to find and target one bacterial cell in a sea of human cells, without misfiring – the magic bullet which became the most important medical discovery of the 20th century.

Chemically, antibiotics are much more complex than anti-cancer or anti-viral drugs, looking more like a spider’s web with their intricate patterns of chemical bonds.

This complex structure make them almost impossible for chemists to design or synthesize, which is why we often turn to nature for their discovery.

Of the myriad of antibiotics that have come on the market over the last 60 years, 99% are derived from other microorganisms, primarily bacteria and fungi in the soil.

But this source of compounds is starting to run out and we must turn our attention to more exotic and extreme environments.

Caves are isolated environments, formed by water eroding rock over millions of years. In such isolation, without the input of sunlight or nutrients from the surface, microorganisms have had to adapt to a life of perpetual famine. …

via BBC News – Cave bacteria could help develop future antibiotics.

Leave a Reply