Billions Of Particles Of Anti-matter Created In Laboratory

By | November 18, 2008


Take a gold sample the size of the head of a push pin, shoot a laser through it, and suddenly more than 100 billion particles of anti-matter appear. The anti-matter, also known as positrons, shoots out of the target in a cone-shaped plasma “jet.”

This new ability to create a large number of positrons in a small laboratory opens the door to several fresh avenues of anti-matter research, including an understanding of the physics underlying various astrophysical phenomena such as black holes and gamma ray bursts.

Anti-matter research also could reveal why more matter than anti-matter survived the Big Bang at the start of the universe.

“We’ve detected far more anti-matter than anyone else has ever measured in a laser experiment,” said Hui Chen, a Livermore researcher who led the experiment. “We’ve demonstrated the creation of a significant number of positrons using a short-pulse laser.”

Chen and her colleagues used a short, ultra-intense laser to irradiate a millimeter-thick gold target. “Previously, we concentrated on making positrons using paper-thin targets,” said Scott Wilks, who designed and modeled the experiment using computer codes. “But recent simulations showed that millimeter-thick gold would produce far more positrons. We were very excited to see so many of them.” …

Particles of anti-matter are almost immediately annihilated by contact with normal matter, and converted to pure energy (gamma rays). There is considerable speculation as to why the observable universe is apparently almost entirely matter, whether other places are almost entirely anti-matter, and what might be possible if anti-matter could be harnessed. Normal matter and anti-matter are thought to have been in balance in the very early universe, but due to an “asymmetry” the anti-matter decayed or was annihilated, and today very little anti-matter is seen.

Over the years, physicists have theorized about anti-matter, but it wasn’t confirmed to exist experimentally until 1932. – sd

Oh oh. The reason we don’t have anti-matter weapons has been that is it so difficult to make anti-matter. Read this:

The primary theoretical advantage of such a weapon is that antimatter and matter collisons convert ~100% of mass into energy while comparatively a fusion reaction in a hydrogen bomb is on the order of 0.7%.On March 24, 2004, Eglin Air Force Base Munitions Directorate official Kenneth Edwards spoke at the NASA Institute for Advanced Concepts[1]. During the speech, Edwards ostensibly emphasized a potential property of positron weaponry, a type of antimatter weaponry: Unlike thermonuclear weaponry, positron weaponry would leave behind “no nuclear residue”, such as the nuclear fallout generated by the nuclear fission reactions which power nuclear weapons. According to an article in San Francisco Chronicle, Edwards has granted funding specifically for positron weapons technology development, focusing research on ways to store positrons for long periods of time, a significant technical and scientific difficulty.

There is considerable skepticism within the physics community about the viability of antimatter weapons. According to an article on the website of the CERN laboratories, which produces antimatter on a regular basis, “There is no possibility to make antimatter bombs for the same reason you cannot use it to store energy: we can’t accumulate enough of it at high enough density. – wiki

Leave a Reply